Total Trihalomethanes Report | I. PWS INFORMATION: Please refer to your DEP Water Quality Sampling Schedule (WQSS) to help complete this form PWS ID: 3213000 City/Town: NORTH READING | | | | | | | | | | | | | |---|--|--|---|---|--|--|--|--|-----------------|---|--|--| | PWS ID: 3213000 City/Town: NORTH READING | | | | | | | | | | | | | | PI | NS Name: | NORTH READING WATER DEPT | | | | | | l pwo. | 01 | COME NITHOU | | | | • | No Hame. | MONTH | LADING VV | AILNULI | | | | l PMS (| Jiass: | COM 🗵 NTNC 🗆 | | | | | DEP Location | T | | | | Sample | Date | | | | | | | | (LOC)ID# | DEP Loca | tion Name | | | Acidified? | 0.0000000000000000000000000000000000000 | Collected By | J | | | | | A | 10281 | | OOL- HAVERH | ILL ST. | | YES | | 06/15 Mark Clark | | | | | | В | 10283 TOWN HALL TAP | | | | | YES | 07/06/15 Mark Clark | | | | | | | C | 10300 | CLARKE PAR | RK BLDG | | | YES | 07/06/15 Mark Clark | | | | | | | D | 10301 | LINDENMEY | ER-MUNROE | | | YES | | | | | | | | 1 | Routine or | Origi | nal, Resubmitt | ed or | | If resubmitted Report, list below: | | | | | | | | I. | Special Sample Confirmation Report ☑ RS ☑ SS ☒ Original ☐ Resubmitted ☐ Confirmation | | | | | (1) Reason for Resubmission | | | | (2) Collection Date of Original Sample | | | | A | ⊠RS □SS | | | | | ☐ Reanalysis | Report Corr | ection | | | | | | B
C | | ☑ RS ☑ SS ☑ Original ☑ Resubmitted ☑ Confirmation ☑ RS ☑ SS ☑ Original ☑ Resubmitted ☑ Confirmation | | | | | | | | | | | | | RS □SS RS □SS | Original L | J Resubmitted | Confirmat | | ☐ Resample ☐ Reanalysis ☐ Report Correction | | | | | | | | 屵 | | | | | | | | | | | | | | A | Sample Notes | | | | | | | | | | | | | E | | | | | | *************************************** | | | | | | | | ABCD | | | | | | | | | | | | | | D | | | | | 3900 | II. Analytical Laboratory Information | | | | | | | | | | | | | | Pr | imary Lab MA | Cert.#: | MA072 | Primar | y Lab Name: | New Engla | nd Chroma(| Chem su | bcontrac | ted? (Y/N) N | | | | | -1 | | 1111070 | 1 | TO A TOWN A SEA A A DOWN AND A SEA A | | | | | * * · | | | | Analysis Lab MA Cert #: MA072 Analysis Lab Name: New England ChromaChem | | | | | | | | | | | | | | | Contan | ninant | 1101 | | | | | | | | | | | | | | R/IC 1 | MIDI | Reculte uall | | | | / | | | | | | Contain | illiani | MCL
ug/L | MDL
ug/l | Results ¹ µg/L | | | C | | D | | | | То | | illiani, | μg/L | MDL
μg/L | Α | E 24 | | C | | D 51.1 | | | | | tal THMs | illiani, | | | A
59.1 | 24 | .7 | 21.0 | | 51.1 | | | | Bro | tal THMs | illiani, | μg/L | μg/L
 | Α | | . 7 | 21.0
ND | | 51.1
ND | | | | Bro
Ch | tal THMs
omoform | | μg/L | μg/L

0.5 | 59.1
1.28 | 24
0.5 | .7
58
04 | 21.0 | | 51.1
ND
32.7 | | | | Bro
Ch
Bro | tal THMs
omoform
loroform | ethane | μg/L | μg/L

0.5
0.5 | A
59.1
1.28
31.0 | 24
0.8
9.0 | .7
58
04 | 21.0
ND
9.62 | | 51.1
ND
32.7
13.8 | | | | Bro
Ch
Bro
Dib | tal THMs
omoform
loroform
omodichlorome | ethane | μg/L | μg/L

0.5
0.5
0.5 | 59.1
1.28
31.0
17.2 | 24
0.5
9.0
9.0 | .7
58
04
96 | 21.0
ND
9.62
7.88
3.49 | 1.2 | 51.1
ND
32.7
13.8
4.59 | | | | Bro
Ch
Bro
Dib
Lal
Dat | tal THMs omoform loroform omodichlorome oromochlorome o Method te Extracted (55 | ethane
ethane | μg/L | μg/L

0.5
0.5
0.5 | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2 | 24
0.5
9.0
9.5
5.1 | .7
58
04
96 | 21.0
ND
9.62
7.88 | 1.2 | 51.1
ND
32.7
13.8 | | | | Bro
Ch
Bro
Dib
Lal
Dat | tal THMs comoform loroform comodichlorome cromochlorome comethod te Extracted (55 te Analyzed | ethane
ethane | μg/L | μg/L

0.5
0.5
0.5 | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2 | 24
0.5
9.0
9.5
5.1 | .7
58
04
96
16
524.2 | 21.0
ND
9.62
7.88
3.49 | | 51.1
ND
32.7
13.8
4.59 | | | | Bro
Ch
Bro
Dib
Lat
Dat
Dat | tal THMs comoform loroform comodichlorome comochlorome comethod de Extracted (55 de Analyzed co Sample ID# | othane
ethane
1.1 only) | μg/L
80 | μg/L

0.5
0.5
0.5
0.5 | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036 | 24
0.5
9.0
9.5
5.1
EPA 5 | .7
58
04
96
16
524.2
7/15 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2 | | | | Bro
Ch
Bro
Dib
Lat
Dat
Lat
Sui | tal THMs comoform loroform comodichlorome comochlorome comethod te Extracted (55 te Analyzed co Sample ID# | ethane
ethane
1.1 only)
4-bromofluor | µg/L
80 | μg/L

0.5
0.5
0.5
0.5 | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104 | 24
0.5
9.0
9.5
5.1
EPA 5
07/0 | .7
58
04
96
16
524.2
7/15 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96 | | | | Bro
Ch
Bro
Dib
Lat
Dat
Lat
Sui | tal THMs comoform loroform comodichlorome comochlorome comethod le Extracted (55 le Analyzed co Sample ID# crogate #1: crogate #2: | ethane 1.1 only) 4-bromofluor | µg/L
80
obenzene
enzene-d4 | μg/L 0.5 0.5 0.5 0.5 % % | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98 | 24
0.5
9.0
9.5
5.1
EPA 5 | .7
58
04
96
16
524.2
7/15 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039 | | | | Bro
Ch
Bro
Dit
Dat
Dat
Lat
Sur | tal THMs comoform loroform comodichlorome comochlorome comethod de Extracted (55 de Analyzed co Sample ID# crogate #1: drogate #2: | ethane ethane 1.1 only) 4-bromofluor 1,2-dichlorobanumber grea | µg/L
80
obenzene
enzene-d4 | μg/L 0.5 0.5 0.5 0.5 % % | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98 | 24
0.5
9.0
9.5
5.1
EPA 5
07/0 | .7
58
04
96
16
524.2
7/15 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96 | | | | Bro
Ch
Bro
Dibb
Lat
Dat
Lat
Sur
Sur | tal THMs comoform loroform comodichlorome comochlorome comethod le Extracted (55 le Analyzed co Sample ID# crogate #1: crogate #2: | ethane ethane 1.1 only) 4-bromofluor 1,2-dichlorob a number grea | pg/L
80
sobenzene
penzene-d4
ater than 0 or N | μg/L 0.5 0.5 0.5 0.5 0.5 ND(not a < MD | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98
L value) | 24
0.5
9.0
9.5
5.1
EPA 5
07/0
5070
98 | .7
58
04
96
16
524.2
7/15
937
8 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95
102 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96 | | | | Broch
Ch
Broch
Date
Date
Late
Sur
Sur
A | tal THMs comoform loroform comodichlorome comochlorome comethod de Extracted (55 de Analyzed co Sample ID# crogate #1: drogate #2: | ethane ethane 1.1 only) 4-bromofluor 1,2-dichlorob a number grea | pg/L
80
sobenzene
penzene-d4
ater than 0 or N | μg/L 0.5 0.5 0.5 0.5 0.5 0.5 0.5 | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98
L value) | 24
0.5
9.0
9.5
5.1
EPA 5
07/0 | .7
58
04
96
16
524.2
7/15
037 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95
102 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96 | | | | Broch
Ch
Broch
Dat
Dat
Lat
Sur
Sur
A
B | tal THMs comoform loroform comodichlorome comochlorome come to Method de Extracted (55 de Analyzed comple ID# drogate #1: drogate #2: drog | ethane ethane 1.1 only) 4-bromofluor 1,2-dichlorob a number grea | pig/L
80
sobenzene
penzene-d4
ater than 0 or N | μg/L 0.5 0.5 0.5 0.5 0.5 0.5 4 ND(not a < MD | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98
L value) | 24
0.5
9.0
9.5
5.1
EPA 5
07/0
5070
98 | .7
58
04
96
16
524.2
7/15
937
8 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95
102 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96 | | | | Broch | tal THMs comoform loroform comodichlorome comochlorome come to Method de Extracted (55 de Analyzed comple ID# drogate #1: drogate #2: drog | ethane ethane 1.1 only) 4-bromofluor 1,2-dichlorob a number gree NOTES AA = AA = | pig/L
80
sobenzene
penzene-d4
ater than 0 or N | μg/L 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0. | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98
L value) | 24
0.5
9.0
9.5
5.1
EPA 5
07/0
5070
98 | .7
58
04
96
16
524.2
7/15
937
8 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95
102 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96 | | | | Broch
Ch
Broch
Dat
Dat
Lat
Sur
Sur
A
B | tal THMs comoform loroform comodichlorome comochlorome come to Method de Extracted (55 de Analyzed comple ID# drogate #1: drogate #2: drog | ethane ethane 1.1 only) 4-bromofluor 1,2-dichlorob a number grea | pig/L
80
sobenzene
penzene-d4
ater than 0 or N | μg/L 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0. | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98
L value) | 24
0.5
9.0
9.5
5.1
EPA 5
07/0
5070
98 | .7
58
04
96
16
524.2
7/15
937
8 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95
102 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96
95 | | | | Bro
Ch
Bro
Dit
Lat
Dat
Lat
Sur
Sur
A
B | tal THMs comoform loroform comodichlorome comochlorome come to Method de Extracted (55 de Analyzed comple ID# drogate #1: drogate #2: drog | 4-bromofluor
1,2-dichlorob
a number grea
NOTES | obenzene penzene-d4 ater than 0 or N | μg/L 0.5 0.5 0.5 0.5 0.5 0.5 0.5 | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98
L value) | 24
0.5
9.0
9.0
5.1
EPA 5
07/07
98
96 | .7
58
04
96
16
524.2
7/15
037
8
6 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95
102 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96
95 | | | | Bro
Ch
Bro
Dib
Lat
Dat
Lat
Sur
Sur
A
B | tal THMs comoform loroform comodichlorome comochlorome co | athane 1.1 only) 4-bromofluor 1,2-dichlorob a number grea NOTES AA = AA = AA = | obenzene enzene-d4 ater than 0 or N | μg/L 0.5 0.5 0.5 0.5 0.5 0.5 0.5 % % ND(not a < MD | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98
L value) | 24
0.5
9.0
9.5
5.1
EPA 5
07/0
5070
98 | .7 58 04 96 16 524.2 7/15 037 8 6 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95
102 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96
95 | | | | Bro
Ch
Bro
Dit
Lat
Sur
Sur
Sur
A
B
C
D | tal THMs comoform loroform comodichlorome comochlorome co | athane 1.1 only) 4-bromofluor 1,2-dichlorob a number grea NOTES AA = AA = AA = AA = AI titles of law that is form and the | obenzene penzene-d4 ater than 0 or N | μg/L 0.5 0.5 0.5 0.5 0.5 0.5 % % ND(not a < MD) soon ontained here | A
59.1
1.28
31.0
17.2
9.65
EPA 524.2
07/07/15
507036
104
98
L value) | 24
0.5
9.0
9.0
5.1
EPA 5
07/07
98
96 | .7 58 04 96 16 524.2 7/15 037 8 6 | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/11
507038
95
102 | 5 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96
95 | | | | Broch | tal THMs comoform loroform comodichlorome comodichl | 4-bromofluor 1,2-dichlorob a number grea NOTES AA = AA = AA = AA = AB = AB = AB = AB = | pig/L 80 80 80 80 80 80 80 80 80 80 80 80 80 | yg/L 0.5 0.5 0.5 0.5 0.5 % % ND(not a < MD 3.3 3.3 3.3 son ontained here my knowledg | A 59.1 1.28 31.0 17.2 9.65 EPA 524.2 07/07/15 507036 104 98 L value) Primary Laline. | 24
0.5
9.0
9.0
5.1
EPA 5
07/07
98
96 | 758 04 96 16 524.2 7/15 037 8 6 0 = 42 gnature: | 21.0
ND
9.62
7.88
3.49
EPA 524
07/07/1
507038
95
102 | 5
K. 73 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96
95 | | | | Broch | tal THMs comoform loroform loroform comodichlorome | 4-bromofluor 1,2-dichlorob a number grea NOTES AA = AA = AIties of law that is form and the complete to the results electron | at I am the perse information cobest extent of | yg/L 0.5 0.5 0.5 0.5 0.5 % % ND(not a < MD 3.3 3.3 3.3 5.3 con ontained here my knowledg | A 59.1 1.28 31.0 17.2 9.65 EPA 524.2 07/07/15 507036 104 98 L value) Primary Laline. | 24 0.5 9.0 9.0 9.0 7.0 5.0 9.0 9.0 0.0 9.0 9.0 9.0 9.0 9.0 9.0 9 | 758 04 06 16 524.2 7/15 037 8 6 0 = 42 gnature: Date: 0 | 21.0 ND 9.62 7.88 3.49 EPA 524 07/07/1 507038 95 102 7.43 | 5 Send of the r | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96
95 | | | | Broch | tal THMs comoform loroform loroform comodichlorome | 4-bromofluor 1,2-dichlorob a number grea NOTES AA = AA = AIties of law that is form and the complete to the results electron | at I am the perse information cobest extent of | yg/L 0.5 0.5 0.5 0.5 0.5 % % ND(not a < MD 3.3 3.3 3.3 5.3 con ontained here my knowledg | A 59.1 1.28 31.0 17.2 9.65 EPA 524.2 07/07/15 507036 104 98 L value) Primary Laline. | 24 0.5 9.0 9.0 9.0 7.0 5.0 9.0 9.0 0.0 9.0 9.0 9.0 9.0 9.0 9.0 9 | 758 04 06 16 524.2 7/15 037 8 6 0 = 42 gnature: Date: 0 | 21.0 ND 9.62 7.88 3.49 EPA 524 07/07/1 507038 95 102 7.43 | 5 Send of the r | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96
95 | | | | Broch | tal THMs comoform loroform loroform comodichlorome comochlorome comoch | athane athane 1.1 only) 4-bromofluor 1,2-dichlorob a number grea NOTES AA = AIlties of law that is form and the omplete to the results electro in which you resitial and Date) | obenzene penzene-d4 ater than 0 or N at I am the perse information or best extent of onically, mail Treceived this re- | yg/L 0.5 0.5 0.5 0.5 0.5 % % ND(not a < MD 3.3 3.3 3.3 5.3 con ontained here my knowledg | A 59.1 1.28 31.0 17.2 9.65 EPA 524.2 07/07/15 507036 104 98 L value) Primary Laline. | 24 0.5 9.0 9.0 9.0 7.0 5.0 9.0 9.0 0.0 9.0 9.0 9.0 9.0 9.0 9.0 9 | 758 04 06 16 524.2 7/15 037 8 6 0 = 42 gnature: Date: 0 | 21.0 ND 9.62 7.88 3.49 EPA 524 07/07/1 507038 95 102 7.43 7.43 7.43 6 days after the ed, whichever is significant to the edge of e | 5 Send of the r | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96
95 | | | | Broch | tal THMs comoform loroform loroform comodichlorome comochlorome comoch | athane athane 1.1 only) 4-bromofluor 1,2-dichlorob a number grea NOTES AA = AA = Alties of law that is form and the omplete to the results electro in which you results at the original of o | obenzene penzene-d4 ater than 0 or N at I am the perse information or best extent of onically, mail Treceived this re- | yg/L 0.5 0.5 0.5 0.5 0.5 % % ND(not a < MD 3.3 3.3 3.3 5.3 con ontained here my knowledg | A 59.1 1.28 31.0 17.2 9.65 EPA 524.2 07/07/15 507036 104 98 L value) Primary Laline. this report to DEP Rear than 10 days after | 24 0.5 9.0 9.0 9.0 7.0 5.0 9.0 9.0 0.0 9.0 9.0 9.0 9.0 9.0 9.0 9 | 758 04 06 16 524.2 7/15 037 8 6 0 = 42 gnature: Date: 0 | 21.0 ND 9.62 7.88 3.49 EPA 524 07/07/1 507038 95 102 7.02 7.08/15 days after the ed, whichever is significant to the edge of | E. 75 | 51.1
ND
32.7
13.8
4.59
EPA 524.2
07/07/15
507039
96
95 | | |